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The case-crossover study design is a popular analytic tool for
estimating the effects of triggers of acute outcomes by envi-
ronmental exposures. Although this approach controls for
time-invariant confounders by design, it may allow for selec-
tion bias and confounding by time-varying factors. We con-
ducted a simulation study of the sensitivity of the symmetric
bidirectional case-crossover design to time-varying patterns in
exposure and outcome. We identified the effects of selection
bias and confounding on symmetric bidirectional case-cross-
over results and offer strategies to eliminate or reduce these
biases. Selection bias results when exposure in the reference
periods is not identically representative of exposure in the

hazard periods, even when the distribution of exposure is
stationary. This bias can be estimated and removed. Selection
bias also occurs when the distribution of exposure is nonsta-
tionary, but the adjusted symmetric bidirectional case-cross-
over methodology substantially controls for this. Confounding
results from a common temporal pattern in the exposure and
the outcome time series, but can also be the result of patterns
in exposure and outcome that, although asymptotically uncor-
related, are correlated at finite series lengths. All three biases
are reduced by choosing shorter referent-spacing lengths. This
effect is illustrated using data on air pollution and daily deaths
in Chicago. (EPIDEMIOLOGY 2001;12:654–661)
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The case-crossover design of Maclure1 represents an
attractive approach to examining the impact of time-
varying exposures that may be triggers of adverse health
events. The design contrasts, for each individual who
suffered an acute event, exposure during an at-risk “haz-
ard period” just before the event to the individual’s
exposure on 1 or more reference days when the event did
not occur. This approach controls for all measured and
unmeasured time-invariant confounders by design, be-
cause these are constant within each individual’s stra-
tum. It has been applied2–6 to examine the effects of air
pollution on mortality and morbidity.

Bateson and Schwartz7 examined how different refer-
ent selection strategies controlled for confounding by
seasonal (365-day cycle) and long-term time trends that
are usually present in environmental time series and may
cause substantial bias. They found that symmetric bidi-

rectional (SBI) referent sampling with close referents
reduced that bias. Recently, investigators8–15 have raised
questions about the choice of reference periods that
suggest that it is more difficult than initially expected to
choose periods that avoid producing selection bias when
there are temporal patterns in the exposure time series.
We address questions of selection bias and confounding
in SBI case-crossover study design and the implications
for choice of reference periods in analyses of environ-
mental time series in which bidirectional reference pe-
riod sampling is justifiable. First, using simulations, we
address the issue of selection bias caused by systematic
and random patterns in the exposure time series alone.
We then simulate common patterns in both the expo-
sure and the outcome time series and examine the re-
sulting confounding. Finally, we apply the lessons
learned to air pollution and mortality data from Cook
County, IL (Chicago area).

Selection Bias
“Avoiding selection bias through proper design depends
on the extent to which the investigator is aware of
potential sources of bias in the anticipated study.”16

Selection bias results when exposure in the reference
periods is not identically representative of exposure in
the hazard periods. In SBI case-crossover studies of en-
vironmental time-series data, selection bias arises when
reference periods are selected on days that are not in the
study base that produced the cases. This situation occurs
when we try to match control days to the first and last
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cases in a time series with daily events using an SBI
design. One solution is to restrict the cases to those that
allow matching both the lag and the lead reference
periods. For a study design choosing referents 7 days
before and after each hazard day, the study base for a
1,096-day time series would be all person-time giving
rise to the cases that occurred on or between days 8 and
1,089, yet reference days are chosen between days 1 and
1,096. Reference periods are used that are not eligible to
be hazard periods, resulting in differential sampling of
exposure. Those first and last days only contribute in-
formation as referents whereas the central days serve as
both hazard days and reference days for other hazard
days. If the distribution of exposure is nonstationary,
there will clearly be selection bias. Surprisingly, this bias
will exist even when the distribution of exposure is
stationary because there will likely be unbalanced high
or low values of the exposure on those days. Only when
all days in a time series serve equally as both hazard and
reference days (that is, the sampling ratio for hazard and
reference days is equal for each day) does this selection
bias disappear. This situation is the inverse of the issue of
overlapping strata of control groups described by Austin
et al,17 and again by Levy et al,15 in which choosing friend
controls in a matched case-control study can lead to bias
if each case’s stratum of friends is not mutually exclusive.
A popular friend becomes differentially represented
causing selection bias. We investigated how this selec-
tion bias depends on the choice of SBI reference periods
and the length of the study time series and we propose a
method to estimate and remove it.

DEPENDENCE ON PERIOD OF PATTERN IN THE EXPOSURE

SERIES

We simulated an exposure series as a cosinusoidal term
with an arbitrary period of 28 days superimposed on a
standard random normal variable. We simulated 3 years
(1,096 days) of data and assigned each day an event
count from a Poisson distribution (� � 100). Because
the number of events on any particular day was inde-
pendent of exposure, there should be no effect of expo-
sure on the frequency of event occurrence except any
attributable to the study design. We chose referents
spaced 1 day before and after each hazard day and
increased the length of the spacing between the hazard
day and the reference days by 1 day at a time up to 28
days. Each of the analyses was done on the same number
of day-matched strata so that only the cases occurring on
hazard days between days 29 and 1,068 were eligible for
inclusion (1,040 days). For each spacing length, we
simulated 1,000 time series and calculated the mean
regression coefficient. Figure 1 shows a plot of the ref-
erent-spacing length vs the mean regression coefficient
under this null situation. The pattern of selection bias is
a function of the spacing length and the underlying
pattern in the exposure time series. It is minimized when
the spacing length is exactly equal to the pattern’s period
or when the spacing length is short.

DEPENDENCE ON LENGTH OF THE TIME SERIES

We examined whether this bias was a function of the
length of the study period. We call the string of hazard
days, which form the basis of the day-matched strata, the
hazard-day series. Using a single time series, we chose
reference days with spacing lengths of 14 days before and
after each hazard day. We estimated the effect at series
lengths of 7 days up to 1,040 days long (equivalent to
one quarter the length of the period of the pattern up to
more than 37 periods). The results were 1,034 regression
coefficients of the effect of exposure under the null, each
based on a different hazard-day series length. Figure 2
plots the hazard-day series length in cycles of the pattern

FIGURE 1. Selection bias by spacing length between the
hazard day and the two symmetric bidirectional reference days
under a simulated null association between exposure and daily
event count. The bias shown at each referent-spacing length is
the mean of 1,000 regression coefficients calculated from 1,000
different time series each with a 28-day cosine pattern in
exposure superimposed on a standard random normal.

FIGURE 2. Regression coefficients for three simulated effect
sizes of exposure plotted against the length of the hazard-day
time series, in cycles of the 28-day pattern. The pattern in
exposure is a 28-day cosine pattern superimposed on a standard
random normal. The bottom series reflects a simulated ln(RR)
� 0, the middle series reflects a ln(RR) � 0.1, and the top
series a ln(RR) � 0.5.
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against the regression coefficients for exposure. The bias
fluctuates between positive and negative with a 28-day
period and is inversely proportional to the length of the
series.

We simulated an effect of exposure equivalent to an
ln[relative risk (RR)] � 0.1 or ln(RR) � 0.5 per unit
increase in exposure and repeated the analyses. Figure 2
also shows the observed regression coefficients by the
length of the hazard-day series for the two non-null RRs.
The pattern of bias is similar and does not appear to be
affected by the underlying RR of exposure, suggesting
that the bias is additive on this scale. Hence, subtracting
the estimated bias calculated from a null effect simula-
tion from the effect estimate seen for a given series
length and referent-spacing length might eliminate this
bias.

Fixing the daily event count, rather than simulating a
random count, will force the outcome to be independent
of exposure and remove variability associated with the
Poisson process. We used the same exposure data and
recalculated the results. The pattern of bias was nearly
identical to that in Figure 2. We subtracted this series of
coefficients from those in Figure 2. Figure 3 shows that
once the bias under the fixed-count null was removed,
the short-term fluctuations in the observed regression
coefficients were removed and the adjusted estimates of
effect are converging on the true simulated effect of
exposure.

Even without systematic patterns in the exposure se-
ries, patterns will occur randomly. Figure 4 shows three
sets of observed regression coefficients plotted against
the length of the hazard-day series for a 14-day referent-
spacing length when we simulated a random exposure
variable. The simulations are for ln(RR) values of 0, 0.1,

and 0.5. As the length of the hazard-day series is in-
creased, the three sets of coefficients rattle around their
true RRs. Again, we found that subtracting the estimates
produced under the fixed-count null analysis of these
exposure data from those when there was a true effect of
exposure produced nearly unbiased and less noisy esti-
mates of the simulated effect of exposure.

Confounding Revisited
Bateson and Schwartz7 demonstrated that confounding
by seasonal and long-term time trends in environmental
time-series data could be largely controlled by using the
SBI case-crossover design. We have reexamined that
work to consider confounding by patterns with less than
a year-long period.

In the following simulations, we have induced pat-
terns in the outcome owing to an omitted covariate that
varies in conjunction with the pattern in exposure (that
is, a confounder). We simulated an exposure series that
was random normal with a standard deviation of 0.15
plus a cosinusoidal term with a 28-day period. We sim-
ulated 3 years of exposure data and generated daily event
counts that were Poisson distributed with a mean of 100
multiplied by the exposure, the same cosine term, and
the RR under study.

We analyzed these data using referent-spacing lengths
from 1 to 28 days. Figure 5 shows a plot of the spacing
length between the hazard and reference days against
the mean of 1,000 regression coefficients under the null.
The bias appears to be a sinusoidal function of the ratio
between the spacing length to the periodicity of the
pattern associated with the exposure and the daily event
count. The confounding is minimized when the spacing
is exactly equal to the period of the pattern or when the
length is very short. We plotted the confounded esti-
mates, adjusted for selection bias, against the series

FIGURE 3. Adjusted regression coefficients for three simu-
lated effect sizes of exposure plotted against the length of the
hazard-day time series, in cycles of the 28-day pattern. The
pattern in exposure is a 28-day cosine pattern superimposed on
a standard random normal. Coefficients are adjusted by sub-
tracting the estimate of effect under the fixed-count null
simulation from the estimates of effect under the naive anal-
yses. The bottom series reflects a simulated ln(RR) � 0, the
middle series reflects a ln(RR) � 0.1, and the top series a
ln(RR) � 0.5.

FIGURE 4. Regression coefficients for three simulated effect
sizes of exposure plotted against the length of the hazard-day
time series in days. The exposure is random normal with a
standard deviation of 0.15. The bottom series reflects a simu-
lated ln(RR) � 0, the middle series reflects a ln(RR) � 0.1,
and the top series a ln(RR) � 0.5.
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length (not shown) and found that this confounding
does not depend on the length of the time series.

We also explored whether patterns in the exposure
and outcome series that are similar in periodicity, but
not identical, give rise to confounding. Patterns with
different periods in the exposure and event-count series
(owing to an omitted covariate) will be, in principle,
uncorrelated. However, the correlation is only zero
when the length of the time series is a multiple of the
two periods or the series is infinitely long. At all other
series lengths, there is some correlation and hence con-
founding. Figure 6 shows the confounding caused by the

correlation between a 28-day pattern in the exposure
series and a 29-day pattern in the event count time series
for SBI referent sampling with lengths of 14 days. The
selection bias is superimposed on another pattern. We
subtracted the estimated selection bias calculated with a
fixed-count analysis from these results. The pattern of
the confounding is a damped harmonic with a period of
812 days, the product of the periodic patterns in expo-
sure and event-count series. A plot of the confounding
from a subsequent analysis with SBI reference days
spaced 7 days instead of 14 days from the hazard day (not
shown) shows that the period of the confounding re-
mains 812 days but that the amplitude of the bias is
smaller.

Adjusting for Selection Bias in Actual Air
Pollution Data
The simulations were based on trigonometric patterns in
exposure, whereas real life is more complicated. To un-
derstand the potential for selection bias and confound-
ing in the real world, we must use real-world data. We
used air pollution data on particulate matter less than 10
�m in aerodynamic diameter (PM10) (the average of
today’s and yesterday’s PM10), and a daily count of total
mortality in Cook County, IL, from 1988 through 1993.
Figure 7 shows an abbreviated periodogram for the time
series of PM10. The highest spikes indicate that there are
relatively strong patterns in the PM10 data with those
periods.

We ran SBI case-crossover analyses with a range of
referent-spacing lengths. To avoid issues surrounding
distributed lag effects18 and autocorrelation,14 we chose
our reference days no closer than 6 days. We wanted to
compare the estimated effect of PM10 across different
spacing lengths from 6 to 14 days, so we excluded the

FIGURE 5. Confounding by spacing length between the
hazard day and the two symmetric bidirectional reference days
under a simulated null association between exposure and daily
event count. The bias at each referent-spacing length is the
mean of 1,000 regression coefficients calculated from 1,000
different time series, each with a 28-day cosine pattern in the
exposure and event count time series.

FIGURE 6. Confounding by length of the hazard-day time series under a simulated null association between exposure and daily
event counts. The thin line is confounding because of the correlation between a 28-day pattern in the exposure time series and
a 29-day pattern in the event-count time series, which included the selection bias. The bold line is the confounding adjusted for
the selection bias.
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first and last 14 days from the hazard-day series so each
analysis was done on the same number of cases. There
were 2,162 day-matched strata available. We controlled
for day-of-the-week effects and for temperature, relative
humidity, and barometric pressure measured on the
event day and temperature measured the day before. We
modeled the weather covariates using penalized splines
with approximately 4 degrees of freedom per term.

We estimated the PM10 effect using conditional logis-
tic regression where each day-matched stratum was
weighted by that day’s event count and estimated the
selection bias for each of the same referent spacings,
with the daily event counts fixed at 1. The magnitude of
the selection bias ranged from �0.0461 to �0.0181 per
100 �g/m3 increase in PM10, substantial compared with
the estimated effect size. The bias was greatest at a
referent-spacing length of 14 days. Figure 8 shows the
estimated selection bias for a spacing of 14 days at
hazard-day series lengths of 2,143 to 2,162 days. The bias
ranges from �0.0461 to �0.0013 over a span of 20 days.

We subtracted the spacing-specific estimates of the
selection bias from the estimated PM10 effect calculated
using the naive approach. For comparison, we analyzed
the same time series using a robust generalized additive
Poisson model. We modeled weather using natural
splines with 4 degrees of freedom for each term. We
controlled for day-of-the-week effects and controlled for
seasonality and long-term time trends using a natural
spline with 4 degrees of freedom per year of data. Table
1 shows the results of the adjusted SBI case-crossover
analyses and the Poisson regression analysis.

If each of the nine case-crossover studies are measuring
the same underlying effect of PM10 on mortality, then all of
the reference pairs could be combined in a single analysis.
The result was an estimated coefficient of PM10 effect of
0.0576 per 100 �g/m3 increase [95% confidence interval
(CI) � 0.0233–0.0920]. The Poisson analysis estimated

the coefficient of PM10 effect at 0.0559 per 100 �g/m3

increase (95% CI � 0.0238–0.0880).
We have shown that a combination of patterns in the

exposure and event count time series can produce some
confounding even when the patterns are asymptotically
uncorrelated. We examined the adjusted SBI case-cross-
over results over a whole year’s change in the hazard-day
series length to look for any pattern that might indicate
the presence of this confounding. Figure 9 shows the
adjusted regression coefficients for a lag length of 14 days
for series lengths of 1,800 days up to 2,160 days.

Discussion
The SBI case-crossover approach is an attractive alter-
native to Poisson time-series analyses using generalized
additive models, but we are still learning about its
strengths and sensitivities. The greatest strength of the
case-crossover design is that it controls for all time-
invariant confounding by design.1 The addition of a
second reference period symmetrically spaced in time
about the hazard day substantially controls for time-
varying confounders such as seasonal variation and long-
term time trends.7 When individuals’ personal covariate
information is available, the design allows for the mod-
eling of effect modification.

Alongside these strengths, we have identified a sen-
sitivity of the SBI case-crossover approach to selection
bias from both systematic and random patterns in the
exposure time series and proposed a method for remov-
ing it. Even a small bias could be substantial in compar-
ison with some effect size estimates. We found selection
bias, on the log scale, as large as �0.0461, where Poisson
regression yields a PM10 effect estimate of 0.0559. More-
over, the size of this bias varied substantially with small
changes in series length.

The SBI case-crossover analyses of patterned expo-
sure data in Figure 1 show that selection bias is

FIGURE 7. Abbreviated periodogram of the PM10 exposure time series in Cook County, IL, from 1988–1993. Periods shown
are restricted to those less than 60 days.
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minimized by choosing referents at spacing lengths
equal to the period of the pattern in exposure, but this
period may not be known a priori or the pattern may
be multiperiodic. Hence, a strategy of choosing refer-
ence days closer to the event day should tend to
minimize bias from patterns with any periodicity and,
therefore, be preferable. Even when the exposure is
random, there will be bias under the null that follows
a pattern specific to that particular exposure time
series. Figures 2 and 4 showed that the bias is a
function of the length of the hazard-day time series

with much bias at short series lengths relative to the
period in the exposure. As the length of the study
increases, the bias decreases. This phenomenon may
explain the bias Lee et al13 observed in the presence of
skewed and incomplete waves. Figure 2 also showed
that the selection bias appears to be independent of
any true RR of exposure and to be dependent on
patterns and random fluctuations in the exposure time
series.

Lumley and Levy14 and Levy et al argue15 that de-
signs selecting referents from categories that are not

FIGURE 8. Selection bias associated with a 14-day symmetric bidirectional spacing of reference days by length of the hazard-day
series for PM10 effect on total mortality in Cook County, IL, 1988–1993. PM2davg is the average of today’s PM10 and yesterday’s
PM10. All models control for temperature, barometric pressure, and relative humidity on the hazard day and for temperature on the
day before the hazard day as well as day of the week.

TABLE 1. Results Are the Coefficients of Effect of Particulate Matter <10 �m in Aerodynamic Diameter per 100 �g/m3

on Total Mortality in Cook County (1988–1993) from a Generalized Additive Poisson Regression Using 24 Degrees of
Freedom to Control for Season and from Symmetric Bidirectional (SBI) Case-Crossover Analyses with Different Lag Lengths
from 6 to 14 Days

Analytic Method
Spacing between the

Hazard and Reference Days Beta
Standard

Error 95% CL

Poisson Regression 0.0559 0.0164 0.0238, 0.0880
SBI case-crossover 6 days 0.0477 0.0204 0.0076, 0.0877
SBI case-crossover 7 days 0.0462 0.0203 0.0064, 0.0860
SBI case-crossover 8 days 0.0383 0.0203 �0.0014, 0.0780
SBI case-crossover 9 days 0.0301 0.0201 �0.0093, 0.0695
SBI case-crossover 10 days 0.0501 0.0202 0.0105, 0.0896
SBI case-crossover 11 days 0.0660 0.0199 0.0270, 0.1050
SBI case-crossover 12 days 0.0661 0.0198 0.0272, 0.1049
SBI case-crossover 13 days 0.0738 0.0197 0.0352, 0.1123
SBI case-crossover 14 days 0.0732 0.0198 0.0344, 0.1121
SBI case-crossover 6–14 days 0.0576 0.0175 0.0233, 0.0920

Inclusive*

All models controlled for temperature, barometric pressure, and relative humidity on the hazard day and temperature on the day before the hazard day as well as day
of the week. 95% CL � 95% confidence limits.
* This model contains nine pairs of symmetric bidirectional controls, one for each referent-spacing length from 6 to 14 days.
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mutually exclusive can be biased owing to violations
of the study base principle. This issue may be espe-
cially significant in case-crossover analyses of time-
series data with sparse events. In the Cook County
data, deaths occurred daily, so each day serves equally
as both hazard and reference day except for the first
and last days. We show how the selection bias due to
this differential sampling of exposure can be estimated
and removed while preserving the SBI design that has
been shown to control for seasonal and long-term
confounding.7 Our method of subtracting off the es-
timated selection bias is similar to Suissa’s8,10 case-
time-control design. His idea was to use a control-
crossover study to estimate the bias in a case-crossover
study attributable to trends in exposure over the in-
tervening time between a prior control period and the
case period. We used a fixed-count null analysis of the
exposure to estimate the selection bias attributable to
the SBI control sampling methodology and then sub-
tracted it from the naive effect estimates. Our method
could be used to remove the selection bias whether it
arose from an unobserved pattern in the data or simply
from random variation in the exposure measure.

Bateson and Schwartz7 simulated various patterns that
caused confounding and showed that choosing SBI ref-
erents minimized confounding compared with other ref-
erent sampling methods. Here we show that confound-
ing is clearly a function of the specific common pattern
in the exposure and event-count time series. When
there is confounding by an omitted covariate in the SBI
case-crossover approach, the bias is generally minimized

by choosing referent-spacing lengths as short as possible
without sampling reference periods so close that they
would be highly autocorrelated with exposure in the
hazard period. Unlike the selection bias we observed
from patterns and random fluctuations in exposure,
which diminishes as the length of the series increases,
confounding by a common pattern does not appear to be
a function of series length.

We have also shown that even when there are
asymptotically uncorrelated patterns in the exposure
and event count time series, confounding can arise, at
least in a simulated setting. The bias appears to be a
dampened harmonic function with a period equal to
the product of the patterns in the exposure and event-
count time series. This finding implies that SBI case-
crossover studies of relatively short time series may be
especially sensitive to this effect. In long time series,
this confounding may be dampened down. One way to
detect this confounding would be to see whether the
effect of exposure, adjusted for selection bias, varies
systematically over time.

In our analysis of the PM10 effect on total mortality in
Cook County, we examined how the adjusted effect of
PM10 changed as the length of the hazard-day time series
varied between 1,800 days and 2,160 days. Figure 9 did
not show the kind of confounding pattern that we saw in
Figure 6. This result implies that either there was no
confounding of that type, or that if present its magnitude
had been sufficiently dampened that its effect was
unappreciable.

FIGURE 9. Adjusted regression coefficients by length of the hazard-day series for PM10 effect per 100 58 g/m3 on total mortality
in Cook County, IL, 1988–1993. PM2davg is the average of today’s PM10 and yesterday’s PM10. All models control for temperature,
barometric pressure, and relative humidity on the hazard day and for temperature on the day before the hazard day as well as day
of the week. Coefficients are adjusted by subtracting the estimate of effect from the fixed-count null analysis from the estimates
of effect under the naive analyses.
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The results in Table 1 show the adjusted effect of
PM10 on mortality in Cook County using the SBI case-
crossover approach with referents chosen at spacings of
6–14 days. Although there is variability between the
estimates, all nine of the adjusted estimates fall within
the 95% CI of the generalized additive Poisson model
analysis of the same data.

The periodogram of PM10 shown in Figure 7 reveals
that there are several strong periodicities present in
these data. The differences in effect estimates across the
nine referent-spacing lengths may be the result of sepa-
rate biases that rise and fall according to how each
referent-spacing length interacts with each of these pat-
terns. If we assume the differences are due to random
variability and are measuring the same underlying effect,
then we could use all of the reference pairs in a single
analysis. This analysis produced nearly identical results
as the comparable Poisson result. The relative efficiency
of this case-crossover result, with 18 controls, compared
with the Poisson result is 87.5%.

CONCLUSION

We were surprised to find that, in a 6-year time series,
the selection bias caused by differential sampling of a
few reference days at either end of the series could
induce such meaningful bias in the context of air
pollution research. Although we have demonstrated
how this bias may be estimated and adjusted for, its
potential must be acknowledged and investigators
should be careful when making assumptions about the
reference exposure distribution, even when that dis-
tribution is stationary. Although our analysis was lim-
ited to environmental time series, the issue of com-
parability of the case and reference groups is a general
one for case-crossover analyses.

With proper attention to bias and confounding, this
approach to studying the triggers of acute events in
environmental time series can be a viable alternative to

Poisson regression and may offer advantages by allowing
for the facile examination of effect modification.

References
1. Maclure M. The case-crossover design: a method for studying transient

effects on the risk of acute events. Am J Epidemiol 1991;133:144–153.
2. Navidi W, Thomas D, Langholz B, Stram D. Statistical methods for epide-

miologic studies of the health effects of air pollution. Res Rep Health Eff Inst
1999;86:1–50.

3. Neas LM, Schwartz J, Dockery D. A case-crossover analysis of air pollution
and mortality in Philadelphia. Environ Health Perspect 1999;107:629–631.

4. Lee JT, Schwartz J. Reanalysis of the effects of air pollution on daily
mortality in Seoul Korea: a case-crossover design. Environ Health Perspect
1999;107:633–636.

5. Sunyer J, Schwartz J, Tobias A, Macfarlane D, Garcia J, Anto JM. Patients
with chronic obstructive pulmonary disease are at increased risk of death
associated with urban particle air pollution: a case-crossover analysis. Am J
Epidemiol 2000;151:50–56.

6. Levy D, Sheppard L, Checkoway H, Kaufman J, Lumley T, Koenig J,
Siscovick D. A case-crossover analysis of particulate matter air pollution and
out-of-hospital primary cardiac arrest. Epidemiology 2001;12:193–199.

7. Bateson TF, Schwartz J. Control for seasonal variation and time trends in
case-crossover studies of acute effects of environmental exposures. Epidemi-
ology 1999;10:539–544.

8. Suissa S. The case-time-control design. Epidemiology 1995;6:248–253.
9. Greenland S. Confounding and exposure trends in case-crossover and case-

time-control designs. Epidemiology 1996;7:231–239.
10. Suissa S. The case-time-control design: further assumptions and conditions.

Epidemiology 1998;9:441–445.
11. Navidi W. Bidirectional case-crossover designs for exposures with time

trends. Biometrics 1998;54:596–605.
12. Hallqvist J, Möller J, Ahlbom A, Diderichsen F, Reuterwall C, de Faire U.

Does heavy physical exertion trigger myocardial infarction? A case-crossover
analysis nested in a population-based case-referent study. Am J Epidemiol
2000;151:459–467.

13. Lee J-T, Kim H, Schwartz J. Bidirectional case-crossover studies of air
pollution: bias from skewed and incomplete waves. Environ Health Perspect
2000;108:1107–1112.

14. Lumley T, Levy D. Bias in the case-crossover design: implications for studies
of air pollution. Environmetrics 2000;11:689–704.

15. Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H. Referent selec-
tion in case-crossover analyses of acute health effects of air pollution.
Epidemiology 2001;12:186–192.

16. Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Prin-
ciples and Quantitative Methods. New York: Van Nostrand Reinhold,
1982;123.

17. Austin H, Flanders WD, Rothman KJ. Bias in case-control studies from
selection of controls from overlapping groups. Int J Epidemiol 1989:18;712–
716.

18. Schwartz J. The distributed lag between air pollution and daily deaths.
Epidemiology 2000;11:320–326.

EPIDEMIOLOGY November 2001, Vol. 12 No. 6 BIAS IN CASE-CROSSOVER ANALYSES 661


